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A boot-strap Poisson–Boltzmann theory for the structure
and thermodynamics of charged colloidal solutions

Simon N. Petrisa) and Derek Y. C. Chan
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of Melbourne, Melbourne, VIC 3010, Australia
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The structural properties and thermodynamics of one- and two-component solutions of charged
colloidal particles with explicit counterions have been investigated by Monte Carlo simulation. A
boot-strap Poisson–Boltzmann~BSPB! theory has been developed to interpret these results and the
accuracy of its predictions is compared with other existing theories. The BSPB was also used to
predict the gas–liquid binodal and spinodal curves for a one-component system with colloid charge
to counterion-charge ratioZr510. © 2003 American Institute of Physics.
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I. INTRODUCTION

Over the past decade, the interest in charged collo
solutions has grown enormously. Charged colloidal soluti
can be investigated using the primitive model, in which
charged species are treated on an equal footing. The s
tural and thermodynamic properties of the solution can
calculated by Monte Carlo~MC! simulations, and within sta
tistical uncertainty, they provide exact answers for the giv
model. However, this approach is highly resource consum
and the time needed to complete the simulations can be q
substantial, particularly for highly charged systems. The
fore it is desirable to develop a simple but reliable theoret
approximation to determine the structural and thermo
namic properties of these systems.

Charged colloidal solutions can be investigated exp
mentally using small-angle neutron scattering~SANS! ex-
periments. Partial structure factors may be measured in s
tions containing various proportions of heavy water a
directly compared with simulation results and predictio
from simple liquid theories. Lutterbachet al.1,2 have pre-
sented SANS measurements for a two-component disper
of highly charged polystyrene and perfluorinated particles
a volume fraction of approximately 9%. They compared th
partial structure factor measurements between the collo
particles with theoretical predictions from the hypernet
chain integral equation and found good agreement. Otte
et al.3 have used SANS to measure partial structure fac
for more dilute two-component suspensions containing s
for volume fractions around 3%. In general, relatively lo
volume fraction solutions are desirable for SANS expe
ments to reduce the effects of multiple neutron scatter
However, due to long-ranged interparticle interactions s
systems can exhibit significant liquid-like structure.

a!Author to whom all correspondence should be addressed; electronic
spetris@ms.unimelb.edu.au
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Here we present a new theoretical approach to calcu
the structural and thermodynamic properties of charged
loidal solutions using a boot-strap Poisson–Boltzma
~BSPB! theory. Comparisons of the structure, internal e
ergy, and pressure are made with Monte Carlo simulation
one- and two-component charged colloidal solutions to
sess the accuracy of the BSPB theory.

II. MODEL

Charged colloidal solutions can be investigated using
primitive model~PM!, in which the large colloidal particles
and small ions are represented as charged hard-spheres
differing hard-sphere radiiRa , number densityna , and va-
lenceZa , obeying the electroneutrality condition

(
a

naZa50. ~1!

The interaction potential between two ionic speciesa andb
at a distancer between their centers, is taken to be made
of a hard-sphere~hs! part and a Coulomb~Coul! part,

uab~r !5uab
hs ~r !1uab

Coul~r !, ~2!

where the hard-sphere and the Coulomb interactions
given by

uab
hs ~r !5H `, r ,~Ra1Rb!

0, r>~Ra1Rb!
, ~3!

uab
Coul~r !5

ZaZbe2

«r
, r .0, ~4!

wheree is the protonic charge. The solvent is treated a
dielectric continuum with a relative dielectric permittivity«.
il:
8 © 2003 American Institute of Physics
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III. SIMULATION ASPECTS

Simulation studies of one-component charged colloi
solutions with explicit counterions have been done by Lin
and they are described in an earlier publication.4 It contains a
comprehensive set of MC results over a wide range of s
free colloidal solutions for structure, internal energy, a
pressure. Although there are both colloidal particles a
counterions in the system, it is referred to as a o
component colloidal solution because the number densit
counterions is directly proportional to the number density
colloidal particles due to electroneutrality.

Simulation studies of two-component colloidal solutio
have recently been undertaken. The system consists
common counterion species and two like-charged but dif
ent sized colloidal particles, denoted as the large~L! and
small~S! colloids. The number ratio of small to large colloid
was varied to investigate the effect on~i! the structure and
~ii ! the electrostatic internal energy of the two-compon
colloidal solutions.

All of the MC simulations were done using the canonic
ensemble. The particles were enclosed in a cubic box
periodic boundary conditions were applied. The long-rang
Coulomb interaction was handled by the Ewald summat
technique using conducting boundary conditions, and
mobility of the colloids was enhanced by the use of the cl
ter move technique.5 The simulations involved 20 000 MC
passes~attempted moves per particle! for equilibration and
then 60 000 passes for production runs. All the simulatio
were performed using the integrated Monte Carlo/molecu
dynamics/Brownian dynamics simulation packageMOLSIM.6

IV. THEORY

A. General theory

The structure of a colloidal solution can be quantified
means of radial distribution functions~rdfs! gab(r ), which
measures the relative density of a particle of typeb at a
distancer from a particle of typea. The total correlation
functions hab(r )5gab(r )21 can be calculated directl
from computer simulations or from liquid state theory
solving the Ornstein–Zernike~OZ! equation, which relates
total correlation functionshab(r ) to direct correlation func-
tions cab(r ),

hab~r !5cab~r !1(
g

ngE cag~r 8!nghgb~r2r 8!dr 8,

~5!

whereng is the bulk number density of speciesg. The rdfs
also obey the local electroneutrality conditions about
ionic species of valenceZa ,

Za52(
b

nbZbE gab~r !dr . ~6!

This condition expresses the requirement that the total
charge surrounding a particular charge of valenceZa must
exactly cancel the charge on that particle. This condition p
vides a check on any approximate expressions forgab(r ).
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Determination of the rdfs enables the calculation of t
electrostatic internal energy per unit volume of the syste

ECoul

V
5

1

2 (
a,b

nanbE uab
Coul~r !gab~r !dr ~7!

5
2pe2

« (
a,b

naZanbZbE
Ra1Rb

`

rhab~r !dr

2
pe2

« (
a,b

naZanbZb~Ra1Rb!2. ~8!

Taken individually, each integral in Eq.~7! diverges because
of the long-ranged nature of the electrostatic potential; ho
ever, the divergences, when taken together, will cancel
cause of the bulk electroneutrality condition, Eq.~6!. In Eq.
~8!, the integrals that determine the electrostatic internal
ergy per unit volume have been broken down into com
nents. The first term comes from integrating beyond
hard-core radii of the charged speciesa andb to infinity. The
second term comes from integrating inside the hard-core
dii of the particles and will be referred to as the electrosta
excluded volume contribution.

The Helmholtz free energyF is the important thermody-
namic quantity required to investigate phase behavior. T
Helmholtz free energy of this system can be separated
an ideal gas contributionF id, a hard-sphere contributionFhs,
and an electrostatic contributionFCoul,

F5F id1Fhs1FCoul. ~9!

By employing a coupling constant or charging integratio
the electrostatic contribution to the Helmholtz free ener
can be evaluated using the formally exact relation

FCoul5E
0

1

ECoul~l!
dl

l
, ~10!

whereECoul(l)[ECoul(e2→le2). This method is often re-
ferred to as the charging process. The Coulomb free en
contribution is always cohesive and tends to destabilize
system. In other words, the net Coulomb repulsion betw
like charged species is outweighed by the net Coulomb
traction between species of opposite charge. The ideal
hard-sphere contributions are stabilizing terms and the c
bination of all three terms allows for the possibility of
liquid–gas like phase separation under certain circumstan

The total system pressureP can be calculated from dif-
ferentiation of the Helmholtz free energy with respect to v
ume,

P52S ]F

]VD
T

. ~11!

Alternatively, the total pressureP can be calculated using th
virial path7

PV

NkT
511

ECoul

3NkT
1

2pV

3N (
a

(
b

nanbgab~Ra1Rb!

3~Ra1Rb!3, ~12!
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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whereN is the total number of particles in the system. T
first term in Eq. ~12! is the ideal contribution, while the
second and third terms account for the Coulomb and h
sphere contributions, respectively. For a one-component
tem, the critical point and spinodal curve of the gas–liqu
phase transition can be obtained through

S ]P

]VD
T

505S ]2P

]V2D
T

~critical point!,

~13!S ]P

]VD
T

50 ~spinodal!.

However, for two or more components the technique for
cating the critical point and the spinodal curve is more co
plicated. Up until now, all the results are completely gene
and a theoretical method is required to calculate the distr
tion functions and then the subsequent thermodynamic q
tities.

B. Boot-strap Poisson–Boltzmann „BSPB … theory

We will now outline the BSPB theory, which can be us
to calculate the approximate rdfs for a general solution
colloidal particles and point ions. LetnJ be the number den
sity of colloids of valenceZJ and hard-sphere radiusRJ and
ni be the number density of point counterions of valenceZi .
Electroneutrality requires that

(
i

niZi1(
J

nJZJ50. ~14!

There are three distinct types of rdfs that characterize
type of solution. These are the colloid–colloid,gJK(r ),
colloid–ion,gJi(r ), and ion–ion rdfs,gil (r ).

Consider the mean electrostatic potentialCJ(r ) about a
given colloidal particleJ, which obeys the Poisson equatio

¹2CJ~r !52
4p

«
r~r !

52
4pe

« F(
i

niZigJi~r !

1(
K

nKZKgJK~r !G , r .RJ . ~15!

We adopt this approach in order to make mean-field appr
mations for the colloid–ion and ion–ion interactions. Let
assume at this stage we have expressions for all the collo
colloid rdfsgJK(r ) and that the colloid–ion rdfs are given b
the Boltzmann approximation

gJi~r !'exp@2bZieCJ~r !#, ~16!

then Poisson’s equation for the potentialCJ(r ) becomes

¹2CJ~r !52
4pe

« S (
i

niZi exp@2bZieCJ~r !#

1(
K

nKZKgJK~r ! D , r .RJ ~17!

with the following boundary conditions:
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]CJ~r !

]r U
r 5RJ

52
ZJe

«RJ
2 ,

~18!CJ~r !→0, r→`.

Equation~17! is a nonlinear differential equation forCJ(r )
if all the gJK(r ) are known. Now consider the mean electr
static potentialC i(r ) about a given point ioni, which obeys
the Poisson equation

¹2c i~r !52
4p

«
r~r !

52
4pe

« F(
l

nlZlgil ~r !

1(
K

nKZKgiK~r !G , r .0. ~19!

This time, we shall assume to have expressions for all
colloid–ion rdfs giK(r ) and use the linearized Boltzman
approximation for the ion–ion rdf

gil ~r !'exp@2bZlec i~r !#'12bZlec i~r !, ~20!

Poisson’s equation for the potentialc i(r ) becomes

¹2c i~r !52
4pe

« S (
l

nlZl~12bZlec i~r !!

1(
K

nKZKgiK~r ! D , r .0 ~21!

with the appropriate boundary conditions

c i~r !→ Zie

«r
, r→0,

~22!c i~r !→0, r→`.

Equation~21! is a linear differential equation forc i(r ) if all
the giK(r ) are known.

V. ONE-COMPONENT SOLUTIONS

To begin with, we shall focus on the one-compone
solutions consisting of one type of colloidal particle and o
type of point counterion species. LetnM be the number den
sity of colloids of valenceZM and hard sphere radiusRM and
nI be the number density of counterions of valenceZI . Elec-
troneutrality requires that

nIZI1nMZM50. ~23!

The BSPB initially relies on the knowledge of the colloid
colloid rdfs to calculate the colloid–ion rdfs by solving E
~17! and then calculate the ion–ion rdfs by solving Eq.~21!.
For a one-component system, the colloid–colloid rdf can
calculated approximately using an effective Yukawa pair p
tential in which the presence of the counterions is taken i
account via a screening constant. For the effective pair
tential between colloidal particles, we use the form8

ueff~r !5
~ZM

eff!2e2

«

exp~2kRM !

~11kRM !2

3~11fM !2
exp~2kr !

r
, r .~2RM !, ~24!
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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wherefM is the total volume fraction andZM
eff is the effective

colloidal charge, which may be much smaller than the ac
chargeZM . An effective charge is used to adequately a
count for the non-linear accumulation of counterions near
colloids while still using a linear theory. We followed th
charge renormalization procedure proposed by Alexan
et al.9 In this procedure, the linearized Poisson–Boltzma
~PB! equation is a spherical Wigner–Seitz cell is solved w
the effective chargeZM

eff adjusted to match the counterio
density at the cell boundary~i.e., the pressure! obtained from
the nonlinear PB equation. We used the same screening
rameter for the pair potential as specified by Alexan
et al.9 asK* in their Eq.~I.4!, which depends on the effec
tive density of counterions, where

nI
effZI1nMZM

eff50 ~25!

and

k25
4pe2

«kT
nI

effZI
25

4pe2

«kT
nMuZM

effZI u. ~26!

This definition ofk was found to give good agreement wi
the MC simulations in a previous study by Lobaskin a
Linse.7

For a one-component system of colloids interacting vi
Yukawa pair potential, Hayter and Penfold10 obtained an
analytic solution of the OZ equation using the closure of
mean spherical approximation~MSA!. With dilute disper-
sions, however, this solution yields unphysical, negative v
ues of the rdf at small separations. Hansen and Hayt11

overcame this problem by assuming the existence of an
penetrable boundary layer around each particle and resc
the MSA solution, which became known as the renormaliz
mean spherical approximation~RMSA!.

We used the RMSA to calculate a rescaled particle
ameter and then the colloid–colloid rdfgMM(r ), and found
this to be an effective technique to initiate the BSPB. With
expression forgMM(r ), Eq. ~17! for the potentialCM(r )
around a colloid was solved numerically to determine
colloid–counterion rdfgMI(r ). Finally, using the approxi-
mate form for gMI(r ), Eq. ~21! for the potentialc I(r )
around a counterion is solved numerically to determine
counterion–counterion rdfgII (r ).

Linse4 has previously reported a comprehensive set
MC results for the structure, reduced internal energy,
reduced pressure for a wide range of solutions. We pre
predictions of the BSPB model for structure, internal ener
and pressure and compare them with the corresponding
results. The system can be completely described in term
three nondimensional variables~i! the colloid to counterion
charge ratioZr , ~ii ! the colloid volume fractionfM , and~iii !
the electrostatic coupling parameter or inverse tempera
G II , defined according to the following:

Zr52
ZM

ZI
,

fM5
4pRM

3

3
nM , ~27!
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G II 5
e2

«kTRM
5

LB

RM
,

whereLB5e2/«kT is the Bjerrum length,k is the Boltzmann
constant, andT is the temperature. In the following, separ
tions will be scaled by the colloid radiusRM .

A. Structural properties

A typical structure comparison is presented in Fig. 1
Zr580 andfM50.01, at an intermediate coupling streng
of G II 50.178. At this state point,kRM50.46 and the renor-
malized colloidal valence isZr

eff52ZM
eff/ZI540.2, approxi-

mately half the actual valence. The renormalized colloi
valence is strongly dependent on the coupling strength
only weakly dependent on the colloid volume fraction. T

FIG. 1. ~a! Colloid–colloid, ~b! colloid–counterion, and~c! counterion–
counterion rdfs from MC simulation 4~solid curves! and BSPB theory~dot-
ted curves! for a one-component system at (Zr ,fM ,G II )
5(80,0.01,0.178).
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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BSPB and MC colloid–colloid rdfs are shown in Fig. 1~a!.
Each curve displays the typical characteristics for a flu
which has a pronounced first maximum at some interpart
distance, followed by successive minima and maxima of
duced amplitude. The general agreement between the
curves is very good and remains so for lower and hig
coupling strengths. The BSPB first maximum occurs
r /RM57.3 and the amplitude value is 1.36, while the M
first maximum occurs atr /RM57.9 and the amplitude valu
is 1.41.

The BSPB and MC colloid–counterion rdfs are shown
Fig. 1~b!. The curves are sharply peaked atr /RM51, which
demonstrates a strong accumulation of counterions nea
colloid surface in the double layer. The BSPB contact va
at r /RM51 is 122, which is near the extrapolated MC val
of 124. The BSPB first minimum occurs atr /RM54.03 and
the amplitude value is 0.58, which compares well with t
MC minimum at r /RM53.88 with an amplitude value o
0.44. The agreement between the two curves remains go
lower and higher coupling strengths, although the predic
contact values are better for low coupling strengths.

FIG. 2. Colloid–colloid rdf peak valuesgMM
max(r/RM) from MC simulation4

~solid curves! and BSPB theory~dashed curves! obtained for a one-
component system at (Zr ,fM)5(80,0.01) over a range ofG II .
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The BSPB and MC counterion–counterion rdfs are co
pared in Fig. 1~c!. There is an inconsistency in that th
counterion–counterion rdf is linearized with respect to t
mean electrostatic potential, whereas these correlations
be quite large at high coupling strengths. Forr /RM>3, the
agreement is very good, but inside this region the BS
cannot predict the intricate details of the MC counterio
counterion rdf. The broad MC peak forr /RM<2 reflects the
strong spatial correlations between counterions in the dou
layer of the same colloid. There is a sharp edge in the M
curve atr /RM'2, which indicates a rapid drop in the loca
density of counterions outside the double layer that
mean-field BSPB cannot reproduce. The MC peak value
curs atr /RM'0.3, and its position changes as the state po
is varied. There is a less pronounced peak in the BSPB cu
at r /RM51, which does not change as the state point is v
ied. It is due to the discontinuity in the functiongMI(r /RM)
at r /RM51 when solving Eq.~17! for the potential around a
counterion.

In Fig. 2, the heights of the colloid–colloid rdf firs
maximum from the BSPB model and MC simulation
gMM

max(r/RM), are plotted against coupling strengthfor Zr

580 andfM50.01. For very low coupling strengths, th
height of the first maximum increases with coupling streng
which corresponds to a more ordered colloid–colloid str
ture. The height of the first maximum reaches a peak valu
the coupling strengthG II 50.178 and above this value, th
height decreases due to increased screening effects o
counterions. The BSPB model is capable of predicting al
these features in very close agreement with the MC sim
tions.

B. Thermodynamics

1. Internal energy

Internal energies were calculated via Eq.~8! using the
BSPB distribution functions. This method allows the sepa
tion of the electrostatic internal energy into the followin
9

TABLE I. Reduced electrostatic internal energy (2E/NkT) for different Zr andG II values atfM50.01.

Zr

G II

0.0222 0.0445 0.0889 0.178 0.356 0.712 1.42

MC 0.0226 0.0546 0.131 0.312 0.772 2.11 5.99
10 BSPB 0.0220 0.0552 0.132 0.314 0.786 2.18 5.9

SPB 0.0216 0.0520 0.122 0.284 0.653 1.49 3.34
MSA 0.0225 0.0561 0.137 0.331 0.785 1.84 4.25

MC 0.0615 0.142 0.327 0.786 2.10 5.79 14.3
20 BSPB 0.0625 0.143 0.327 0.798 2.19 6.02 14.4

SPB 0.0575 0.130 0.286 0.629 1.36 2.90 6.16
MSA 0.0659 0.158 0.372 0.862 1.97 4.43 9.86

MC 0.151 0.338 0.794 2.09 5.64 13.7 30.3
40 BSPB 0.150 0.335 0.805 2.20 6.00 14.4 30.5

SPB 0.135 0.288 0.602 1.26 2.62 5.41 11.3
MSA 0.181 0.417 0.945 2.11 4.66 10.2 22.0

MC 0.345 0.800 2.08 5.54 13.3 29.1 a

80 BSPB 0.346 0.808 2.19 6.01 14.4 30.4 60.6
SPB 0.285 0.584 1.19 2.45 4.98 10.2 21.1
MSA 0.462 1.030 2.26 4.90 10.5 13.7 47.4

aUnstable system.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Do
TABLE II. Reduced excess internal energy (2E/NkT) for different fM andG II values atZr540.

fM

G II

0.0222 0.0445 0.0889 0.178 0.356 0.712

0.001 25 MC 0.0735 0.168 0.415 1.35 4.91 13.2
BSPB 0.0748 0.170 0.427 1.49 5.76 16.2
SPB 0.0678 0.149 0.324 0.709 1.53 3.25
MSA 0.101 0.25 0.602 1.42 3.3 7.51

0.0025 MC 0.0944 0.215 0.526 1.60 5.17 13.4
BSPB 0.0956 0.217 0.543 1.75 5.95 15.7
SPB 0.0861 0.187 0.402 0.862 1.83 3.84
MSA 0.125 0.303 0.713 1.65 3.76 8.41

0.005 MC 0.120 0.271 0.654 1.85 5.41 13.5
BSPB 0.121 0.273 0.671 1.99 6.04 15.1
SPB 0.108 0.233 0.495 1.05 2.11 4.55
MSA 0.152 0.359 0.828 1.88 4.21 9.30

0.01 MC 0.151 0.338 0.794 2.09 5.64 13.7
BSPB 0.150 0.335 0.805 2.20 6.00 14.4
SPB 0.135 0.288 0.602 1.26 2.62 5.41
MSA 0.181 0.417 0.945 2.11 4.66 10.2

0.02 MC 0.186 0.412 0.943 2.32 5.86 13.8
BSPB 0.182 0.402 0.930 2.36 5.97 13.7
SPB 0.165 0.350 0.731 1.51 3.12 6.42
MSA 0.211 0.477 1.060 2.34 5.09 11.0

0.04 MC 0.226 0.493 1.10 2.55 6.08 14.0
BSPB 0.214 0.466 1.05 2.49 5.91 13.2
SPB 0.198 0.420 0.874 1.80 3.69 7.57
MSA 0.242 0.537 1.18 2.56 5.52 11.8

0.08 MC 0.268 0.578 1.25 2.78 6.32 14.1
BSPB 0.241 0.520 1.14 2.59 5.90 13.0
SPB 0.234 0.492 1.02 2.11 4.32 8.81
MSA 0.274 0.598 1.29 2.78 5.94 12.7
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four components~i! colloid-colloid, EMM , ~ii ! colloid–
counterion,EMI , ~iii ! counterion–counterionEII , and ~iv!
excluded volume,Eexcl:

ECoul5EMM1EMI1EII 1Eexcl. ~28!

It is useful to separate the total energy into these compon
and compare the BSPB and MC values to examine the a
racy of each term. In Tables I and II, we compare the BS
internal energies in two planes, with the MC values of Lins4

and the symmetric Poisson–Boltzmann~SPB! and mean
spherical approximation~MSA! values of Bhuiyan and
Outhwaite.12 The energies are for state points in the (Zr ,G II )
plane at volume fractionfM50.01 and on state points in th
(fM ,G II ) plane atZr540. The BSPB internal energy pre
dictions are in excellent agreement with the MC values
all the state points considered in Tables I and II, whereas
SPB and MSA are only in good agreement with the M
values for a small number of state points. The BSPB ener
are in particularly good agreement with the MC values
low volume fractionfM and low coupling parameterG II ,
because the BSPB predictions of the colloid–colloid dis
bution functiongMM(r /RM) and consequently the colloid
colloid energy EMM ~which comes from integrating
gMM(r /RM)) are very accurate. In this region of phase spa
EMM is the dominant contribution to the total internal energ
The colloid–counterionEMI and counterion–counterionEII

energy contributions are less significant because the accu
wnloaded 31 Jul 2012 to 136.186.72.84. Redistribution subject to AIP lic
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lation of counterions near the colloid surface is relative
low, so correlations between these species are weak in
region.

In general, the BSPB internal energy estimates beco
less accurate as eitherfM or G II is increased. The main
source of error in the BSPB model comes from the relativ
poor prediction of ion–ion correlations. As either the volum
fractionfM or coupling parameterG II is raised, the accumu
lation of counterions near the colloid surface increases
colloids–counterion and counterion–counterion correlatio
become more significant. As a consequence, the collo
counterionEMI and counterion–counterionEII contributions
to the internal energy become relatively more important. F
G II >0.178,EMI replacesEMM as the dominant contribution
to the internal energy.

2. Pressure

The BSPB pressures were calculated via the virial p
(BSPBv) using Eq.~12!. In Table III, they are compared with
the MC pressures, and the SPB pressures via the v
(SPBv), charging (SPBch), and compressibility routes
(SPBc) in the (fM ,G II ) plane atZr540. Like the internal
energy values, the BSPB pressures are in excellent ag
ment with MC values for lowfM and lowG II , but become
less accurate as either of these system parameters i
creased. There is considerable uncertainty in the virial p
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Reduced pressurePV/NkT for different fM andG II values atZr540. The MC values are from
Linse4 and the SPB values are from Bhuiyan and Outhwaite12.

fM

G II

0.0222 0.0445 0.0889 0.178 0.356 0.712

0.001 25 MC 0.978 0.949 0.882 0.713 0.446 0.258
BSPBv 0.978 0.949 0.878 0.671 0.108 21.120
SPBv 0.980 0.955 0.902 0.793 0.568 0.103
SPBc 1.08 0.991 0.921 0.839 0.733 0.598
SPBch 0.985 0.961 0.914 0.821 0.648 0.321

0.0025 MC 0.974 0.938 0.857 0.673 0.410 0.247
BSPBv 0.973 0.937 0.852 0.628 0.099 20.941
SPBv 0.976 0.946 0.882 0.752 0.486 20.064
SPBc 1.03 0.968 0.907 0.821 0.704 0.555
SPBch 0.985 0.956 0.900 0.790 0.584 0.189

0.005 MC 0.967 0.927 0.834 0.641 0.387 0.241
BSPBv 0.969 0.926 0.828 0.596 0.125 20.704
SPBv 0.973 0.937 0.862 0.709 0.395 20.253
SPBc 1.00 0.954 0.893 0.801 0.672 0.513
SPBch 0.989 0.956 0.889 0.761 0.517 0.045

0.01 MC 0.967 0.917 0.814 0.621 0.379 0.231
BSPBv 0.968 0.918 0.811 0.583 0.198 20.419
SPBv 0.974 0.932 0.846 0.668 0.305 20.449
SPBc 0.990 0.948 0.883 0.783 0.642 0.474
SPBch 1.00 0.966 0.889 0.740 0.456 20.100

0.02 MC 0.941 0.915 0.804 0.608 0.379 0.213
BSPBv 0.972 0.918 0.807 0.595 0.274 20.140
SPBv 0.983 0.938 0.845 0.650 0.248 20.512
SPBc 0.990 0.951 0.884 0.776 0.624 0.447
SPBch 1.04 0.999 0.913 0.745 0.421 20.220

0.04 MC 0.987 0.929 0.811 0.618 0.383 0.213
BSPBv 0.989 0.920 0.822 0.629 0.371 0.090
SPBv 1.02 0.976 0.889 0.697 0.278 20.635
SPBc 1.00 0.975 0.917 0.810 0.646 0.451
SPBch 1.13 1.08 0.993 0.812 0.454 20.263

0.08 MC 1.03 0.970 0.851 0.656 0.421 0.225
BSPBv 1.03 0.973 0.869 0.692 0.467 0.206
SPBv 1.12 1.11 1.07 0.920 0.544 20.401
SPBc 1.05 1.07 1.09 1.09 0.945 0.610
SPBch 1.34 1.29 1.20 1.01 0.637 20.129
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to calculate the pressure because it requires a very pre
knowledge of the colloid–counterion contact val
gMI(RM). The pressure is determined by the small differen
of two large numbers—a negative Coulombic contributi
and a positive hard-core repulsion.7 The BSPB contact val-
uesgMI(RM) are most accurate for low coupling strengt
G II , and become less accurate asG II is increased. This ex
plains why at the highest coupling strength,G II 50.712, the
BSPBv , SPBv , and SPBch can predict unphysical negativ
pressures.

C. Phase Behavior

Spinodal and binodal curves were determined using
BSPB internal energy path~BSPEe! and they are compare
in Fig. 3 with the MSA curves13 and the MC simulation
curves of Resˇčič and Linse,14 which are only available for
Zr510. The BSPBe binodal and critical point are in muc
better agreement with the MC results than the MSA. A co
parison of the critical point predictions using the BSPBe,
SPBeh, MSAe and extended Debye–Huckel~EDHe!

15 theo-
ries for Zr510, is presented in Table IV.
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It was not possible to locate any spinodal curves forZr

>20 using the BSPBe. This is somewhat surprising consid
ering the good agreement between the BSPB and MC
and internal energies, but if one examines the internal e
gies in the (fM ,G II ) plane atZr540 in Table II it can be
understood. For the highest coupling strength,G II 50.712,
the BSPB internal energies are in better agreement with
MC values than the SPB or MSA values for all the volum
fractions considered. However, the trend is for the BS
internal energies to decrease asfM is raised. Whereas the
MC, SPB, and MSA internal energies all increase asfM is
raised, which is the correct type of trend conducive to
liquid–gas type separation. Hence the trend in the BS
internal energies is in error at high coupling strengths, wh
leads to its failure to predict spinodal curves forZr>20. This
failure in the BSPB theory can be attributed to its undere
mation of the counterion–counterion repulsion at small se
ration. For Zr510, it is still possible to find the spinoda
using the BSPB model because the error in predicting io
ion correlations is not significant enough to inhibit th
liquid–gas separation.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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VI. TWO-COMPONENT SOLUTIONS

Subsequent to the work of Hayter and Penfo
Ginoza16–18 developed an analytic solution of the OZ equ
tion for mixtures of Yukawa particles under the MSA cl
sure. We used Ginoza’s solution with a rescaling argum
~RMSA!, together with a charge renormalization9 scheme to
calculate the correlation functions between mixtures of c
loidal particles. Ginoza17 provides a method for solving th
OZ equation~4! with the Yukawa closure

hab~r !521, r ,~Ra1Rb!,
~29!

cab~r !5Kdadb

exp~2zr!

r
, r .~Ra1Rb!,

whereRa andRb are the radii of speciesa andb, K, z, da

anddb are constants. Ginoza’s solution builds on the pre
ous work by Baxter19 and Blum and Høye.20

To apply Ginoza’s solution to the model system we ne
to express the direct correlation functionscab(r ) in the form
of Eq. ~29! using the MSA,

cab~r !52
uab

eff ~r !

kT
. ~30!

For the effective pair potential between colloidal particles
type J and K, we use the general form derived for larg
colloidal size and charge8

uJK
eff ~r !5

ZJ
effZK

effe2

«

exp~kRJ!

11kRJ

exp~kRK!

11kRK

3~11f!2
exp~2kr !

r
, r .~RJ1RK!, ~31!

where f is the total volume fraction,ZJ
eff and ZK

eff are the
effective colloidal charges, andk is the screening paramete
which depends on the effective density of counterions, wh

ni
effZi1 (

J,JÞ i
nJZJ

eff50 ~32!

and

k25
4pe2

«kT
ni

eff~Zi !
2. ~33!

FIG. 3. Gas–liquid binodal~solid! and spinodal~dashed! curves from the
MSAe, BSPBe, and MC simulation14 for a one-component system withZr

510. The critical points are marked with an3 on each curve.
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The constants in Eq.~29! can now be specified

K5
e2

«kT
~11f!2,

dJ5
ZJ

eff exp~kRJ!

11kRJ
, ~34!

z5k.

In the RMSA, particles are assigned an effective hard sph
diameter larger than or equal to their true diameter by so
scale factors>1. Ginoza16–18 outlines an iteration scheme
which we have followed to find thiss.

The BSPB was applied to a system containing li
charged large~L! and small ~S! colloidal particles and a
common neutralizing counterion species~I!. We used Gino-
za’s RMSA solution to determine the rdfs between the c
loidal particles and then the BSPB theory in Sec. IV to c
culate the remaining rdfs involving the counterion species
such a system there are now six relevant distribution fu
tions to consider; namely the~i! L –L, ~ii ! L –S, ~iii ! S–S,
~iv! L – I , ~v! S– I , and~vi! I – I . Let nL be the number den
sity of large colloids of valenceZL and hard sphere radiu
RL , nS be the number density of large colloids of valenceZS

and hard sphere radiusRS andnI be the number density o
point counterions of valenceZI . Electroneutrality requires
that

nIZI1nLZL1nSZS50. ~35!

The state of the two-component colloidal solution
uniquely specified in terms of six nondimensional variabl

ZL52
ZL

ZI
,

ZS52
ZS

ZI
,

NR5
nS

nL
,

~36!

RR5
RS

RL
,

G II 5
e2

«kTRL
,

fL5
4pRL

3

3
nL .

We investigated the effect of adding different number rat
(NR5nS /nL) of small colloids on~i! the structure of the
large colloids and~ii ! the electrostatic internal energy. Th

TABLE IV. Comparison of the MC critical values with those from th
BSPB, MSA, SPB, and EDH theories for Zr510.

MC BSPBe MSAe SPBch SPBv EDHe~high!

fM 0.15 0.10 0.07 0.01 0.02 0.24
G II 2.6 1.9 1.5 2.3 1.5 0.32
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 4. ~a! Large–large,~b! large–
small, ~c! small–small, ~d! large–
counterion,~e! small–counterion, and
~f! counterion–counterion rdfs from
MC simulation ~solid curves! and
BSPB theory ~dotted curves! for
a two-component colloidal system
at (ZL , ZS , NR , RR , fL , G II )
5(80,10,2,0.4,0.01,0.178).
o

r
hic
v

a

all

o-
nent
r

lu-

s
a

ce,
m-
nd
ar
properties of the system were chosen to be similar to th
used in the SANS experiments of Ottewillet al.,3

ZL52 580,

ZS52 510,

NR5 1,2,4,8,16,
~37!

RR5 0.4,

G II 50.178,

fL50.01.

The coupling strength and large colloid volume fraction a
the same as in the one-component example in Fig. 1, w
is the system with no small colloids. All separations ha
been scaled by the large colloid hard sphere radiusRL .

A. Structural properties

The BSPB and MC rdfs are compared in Fig. 4
this point in phase space (ZL ,ZS ,NR ,RR ,fL ,G II )
Downloaded 31 Jul 2012 to 136.186.72.84. Redistribution subject to AIP lic
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e
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5(80,10,2,0.4,0.01,0.178), where the number ratio of sm
colloids to large colloids isNR5nS /nL52. The renormal-
ized charges were determined by considering the tw
component system as a mixture of separate one-compo
systems ofL andS colloids. The renormalized valences fo
the L andS colloids in their respective one-component so
tions areZL

eff540.2 andZS
eff59.35 andkRL50.56. In Figs.

4~a!, 4~b!, and 4~c! the BSPB and MCL –L, L –S, andS–S
colloid–colloid rdfs are shown. The colloid–colloid rdf
display the typical characteristics for a fluid, which has
pronounced first maximum at some interparticle distan
followed by successive minima and maxima of reduced a
plitude. The amplitudes and positions of the maxima a
minima from theory and simulation agree well, in particul
theS–S curves, which are almost identical. The BSPBL –L
first maximum occurs atr /RL56.4 and the amplitude value
is 1.26, while the MCL –L first maximum occurs atr /RL

56.8 and the amplitude value is 1.31.
In Figs. 4~d! and 4~e! the BSPB and MC large-

counterion~L–I! and small-counterion~S–I! rdfs are shown.
TheL – I curve is sharply peaked atr /RL51, and indicates a
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 5. ~a! Large–large,~b! large–
small, ~c! small–small, ~d! large–
counterion,~e! small–counterion, and
~f! counterion–counterion rdfs from
MC simulation ~solid curves! and
BSPB theory ~dotted curves! for a
two-component colloidal system
at (ZL , ZS , NR , RR , fL , G II )
5(80,10,8,0.4,0.01,0.178).
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For
strong accumulation of counterions near the surface of
large colloid, analogous to the one-component system.
BSPB L – I contact value is 101, which is a slight overes
mate of the extrapolated MC value of 93. TheL – I contact
value in the two-component solution is approximately 25
lower in comparison with theM – I contact value in the one
component solution. The main explanation for the redu
L–I contact value is that the average concentration of co
terions has increased due to the extra counterions acco
nying the small colloids. TheS– I curve peaks atr /RL

50.4, and indicates a reasonable accumulation of coun
ons near the small colloid surface. The BSPB contact va
is 13.2, which also is a slight overestimate of the extra
lated MC value of 11.5. TheI – I rdf in Fig. 4~f! is very
similar to Fig. 1~c! for the one-component solution.

The BSPB and MC two-component rdfs are shown
Figure 5 at a higher ratio of small colloids to large colloids
NR58 at the same coupling strength. Using the phase sp
point (ZL ,ZS ,NR ,RR ,fL ,G II )5(80,10,8,0.4,0.01,0.178)
the renormalized charges for theL and S colloids in their
respective one-component solutions areZL

eff540.2 andZS
eff
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59.1 andkRL50.78. In Figs. 5~a!, 5~b!, and 5~c! the BSPB
and MC L –L, L –S, and S–S colloid–colloid rdfs are
shown. The BSPBL –L first maximum is atr /RL54.94 and
the peak value is 1.21, while the MCL –L first maximum
is at r /RL55.88 and the peak value is 1.22. The BSPB p
diction of the L –L first maximum position gets progres
sively worse as the ratio of small to large colloids is i
creased. In Figs. 5~d! and 5~e! the BSPB and MCL – I and
S– I rdfs are shown. The BSPBL – I contact value is 63,
which very slightly overestimates the extrapolated MC va
of 61.1. TheL – I contact value is considerably reduced co
pared with the value for the ratio ofNR52. The BSPB and
MC S– I contact values are 11.3 and 10.7, respective
which are also lower than the respective values for the r
of NR52.

B. Thermodynamics

Internal energies were calculated using Eq.~8! from the
BSPB distribution functions using the charging process.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE V. Reduced internal energyE/NkT for a binary colloid soultion at differentNr values atG II 50.178.

LL LS SS LI SI II Excl E/NkT

Nr50 MC 22.02 0 0 24.20 0 0.89 20.21 25.54
BSPB 22.06 0 0 24.54 0 0.79 20.21 26.02

Nr51 MC 21.73 20.23 20.0031 23.58 0.094 0.71 20.20 24.96
BSPB 21.79 20.21 20.0050 24.25 0.070 0.81 20.20 25.58

Nr52 MC 21.44 20.34 20.016 23.34 0.13 0.67 20.20 24.54
BSPB 21.34 20.36 20.018 23.93 0.11 0.77 20.20 24.97

Nr54 MC 21.12 20.43 20.055 22.84 0.12 0.56 20.20 23.97
BSPB 20.87 20.51 20.055 23.47 0.14 0.72 20.20 24.23

Nr58 MC 20.69 20.52 20.11 22.32 0.11 0.44 20.20 23.28
BSPB 20.47 20.57 20.14 22.80 0.12 0.63 20.20 23.43

Nr516 MC 20.31 20.57 20.19 21.65 0.011 0.29 20.21 22.63
BSPB 20.19 20.49 20.27 22.02 0.020 0.48 20.21 22.69
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D.
this system, the electrostatic internal energy can be sepa
into seven terms to examine the strengths and weakness
the BSPB theory,

ECoul5ELL1ELS1ESS1ELI1ESI1EII 1Eexcl. ~38!

The BSPB reduced internal energies are compared term
term with the MC values in Table V for selected numb
ratios of small to large colloids between 0 and 16. The BS
energy terms become less accurate compared with the
terms as the ratio of small to large colloids is increased. T
trend reflects the agreement between the BSPB and
structures, which is generally better for low number rat
such as theNR52 case in Fig. 4 than for high number ratio
such as theNR58 case in Fig. 5. TheLL, SI and II energy
terms are in considerable error for theNR516 case. How-
ever, the BSPB and MC total energies remain in good ag
ment for all the number ratios considered. This is mislead
since it is due to the cancellation of errors between ove
timated and underestimated energy terms. Overall, the B
theory is more reliable for low ratios of small to large co
loids.

VII. CONCLUSIONS

We have developed the BSPB theory to calculate
distribution functions and thermodynamic quantities for on
and two-component charged colloidal solutions. The BS
distribution functions have been compared with MC simu
tions with explicit counterions, and the thermodynam
quantities have been compared with both MC simulatio
and other theoretical predictions. The BSPB appears to
better agreement with the MC simulations for the thermo
namic quantities than any of the other existing theories. T
strength of the BSPB theory is that it takes into account
some extent, the effect of colloid–colloid correlations a
high charge asymmetries in the thermodynamics
colloid–ion correlations. At this stage, the BSPB does a re
tively poor job of predicting ion–ion correlations, but the
are normally small contributions to the thermodynamics,
cept for very high coupling strengths.
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The BSPB was used to predict the gas–liquid bino
and spinodal curves for a one-component solution with
colloid charge to counterion-charge ratioZr510, in good
agreement with the MC simulation curves. At this stage,
have not searched for any spinodal curves for systems
two colloidal species using the BSPB, because of the ina
ity of the BSPB to predict a spinodal curve for on
component solutions withZr>20. However, we hope to
make improvements to the BSPB theory in the near futu
such as to improve the prediction of ion–ion correlations
small separations, which will hopefully allow for a mor
detailed investigation of the phase behavior of charged
loidal solutions.
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14J. Resˇčič and P. Linse, J. Chem. Phys.114, 10131~2001!.
15D. Y. C. Chan, P. Linse, and S. N. Petris, Langmuir17, 4202~2001!.
16M. Ginoza, J. Phys. Soc. Jpn.55, 1782~1986!.
Downloaded 31 Jul 2012 to 136.186.72.84. Redistribution subject to AIP lic
17M. Ginoza, J. Phys. Soc. Jpn.55, 95 ~1986!.
18M. Ginoza, Mol. Phys.71, 145 ~1990!.
19R. J. Baxter, J. Chem. Phys.52, 4559~1970!.
20L. Blum and J. S. Høye, J. Stat. Phys.19, 317 ~1978!.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions


